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Cationic methylene blue (MB) and anionic orange G (OG) dyes were adsorbed using the first-ever synthesized
nanocomposite of MXene-AgMOF. At 200 mg/L and 0.01 g, GO-AgMOF, MXene-AgMOF, and AgMOF were able
to adsorb 99.9%, 99.0%, and 98.0% of cationic MB dye, respectively, from water. The nanocomposites were
characterized both before and after adsorption using different characterization techniques. These nano-
composites show promise as cationic contaminant adsorbents, with an adsorption capacity of 399.9 mg/g for GO-
AgMOF. Also, the enhanced adsorption capacity of AgMOF for anionic and cationic dyes suggests its potential use

in environmental remediation when combined with MXene.

1. Introduction

The use of dyes in many chemical industries, such as plastics, paints,
pulp and paper, and textiles, has been increasing in recent years. The
release of dyes into water bodies raises serious environmental concerns
as they are non-biodegradable, toxic, mutagenic, and carcinogenic [1].
Various methods have been adopted to remove dyes from wastewater,
including nanofiltration [2,3], electrocatalysis [4], biological treatment
[5], advanced oxidation [6], and adsorption [7]. Adsorption has been
widely used to remove contaminants from wastewater due to its low
energy consumption, simplicity, and cost-effectiveness [8,9]. Never-
theless, this method has some disadvantages, primarily low selectivity,
adsorbent regeneration issues, and secondary waste generation [10,11].
To overcome these challenges, various materials, including metal oxides
[12], MXenes [13], chitosan [14], carbon-based [15] nanostructures,

and nanocomposites (NCs) have been studied for removing dyes.
Metal-organic frameworks (MOFs) have recently emerged as adsor-
bents [16-18] since these coordinated systems with metallic-organic
structures can offer multiple reactive sites that are favorable to form
hydrogen bonds [19-21], electrostatic interactions [22-24], acid-base
interactions [25-27], and 7-n interactions in aqueous media [28-30].
Some MOFs have shown low adsorption capacity due to low stability,
insufficient pore volume, and surface area because the uncontrolled
reaction between the organic ligand and metal salts can occur, leading to
the formation of coarse and bulky structures with decreased active area
for adsorption [31]. In order to overcome these issues, porous
two-dimensional (2D) or three-dimensional (3D) materials have been
incorporated during MOF fabrication to control their growth rate [32].
In this respect, hybrid materials were synthesized to achieve high
adsorption sites [33-35] thereby increasing the surface area for
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improved dye adsorption [36,37]. The abundant oxygen-containing
functional groups (hydroxyl groups on basal planes and carboxyl
groups on the edges and epoxide) endow GO with a negative surface
charge upon protonation, making it a promising additive to AgMOF for
cationic dye removal [38,39]. MXenes, a new class of 2D material
formed by the transition metal carbides, nitrides, or carbonitrides, can
help increase the negative charge of the NCs to provide high adsorption
sites for efficient cationic dye adsorption [13,40,41].

MXene’s 2D structure is defined by n+1 layers of early transition
metals (M), n layers of carbon or nitrogen (X), and surface terminations
(T,) like F, O, OH, or Cl. Topochemical selective etching of MAX phases
produces MXenes [42]. MXene quality depends on MAX phases, hex-
agonal closed-packed layered carbides and nitrides (A in MAX refers to
A-group elements of the periodic table, such as Al, Ga, and Si) [43].
Selective etching removes the A-layer atoms from the MAX phase, fol-
lowed by delamination and exfoliating of loosely packed 2D MXene
flakes. MXene could be made as a multilayered-powder or single-flake
colloidal solution [43]. Colloidal MXenes are generated by exfoliating
multilayered-MXenes to single-flake MXenes. MXene’s large theoretical
surface area, chemical stability, metallic conductivity, hydrophilicity,
fine structure, and tuneable chemistry make it useful as an adsorbent for
the removal of organic contaminants [44]. Besides MXene, graphene
oxide (GO) nanosheets are another group of 2D materials composed of
carbon atoms arranged in a honeycomb lattice; they have many hy-
droxyl, carboxyl, and epoxy functional groups [45]. Because of its high
hydrophilicity, specific surface area, and reactive sites for chemical re-
actions, GO is an attractive component of nanocomposite structures
[46]. Heterogeneous nanocomposites of GO, such as GO-MOF-based
nanocomposites, are an attractive option for producing
high-performance functional adsorbents [47].

In this study, a silver-based MOF (AgMOF) was functionalized by
graphene-oxide (GO) and Ti3CyT, MXene to fabricate GO-AgMOF and
MXene-AgMOF nanocomposites. While the synthesis of AgMOF and GO-
AgMOF has been reported previously, MXene-AgMOF represents a novel
nanocomposite with outstanding potential for dye adsorption. These
NCs were characterized by X-ray diffraction (XRD), Raman spectros-
copy, Fourier-transform infrared spectroscopy (FTIR), scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) to
confirm successful fabrication. This work aims to investigate the effect of
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AgMOF composition with GO and MXene on water recycling and
adsorption capacity. Methylene blue (MB) as a cationic dye and orange
G (OG) as an anionic dye were used for adsorption experiments.

2. Methods

Materials. The following reagents were purchased from US VWR
(Radnor, PA, US): methylene blue (MB) (C14H;15CIN3S.H20); —1, 3, 5-
benzentricarboxylic acid (BTC); silver nitrate (AgNOs); ethanol (Pu-
rity, 99%). Graphene-oxide (GO) nanopowders (US1022) with
0.43-1.23 nm thickness and 1.5-5.5 pm diameter were purchased from
US Research NPs, Inc. (Houston, USA).

Preparation of TizgCyT, MXene. Ti3CoTy MXene sheets were pre-
pared based on the method described earlier [48]. In brief, at ambient
temperature, 1 g of LiF was dissolved in 20 mL of HCI (9 M) for 5 min. In
the next step, 1 g of Ti3AlC; was mixed in the solution, stirring under
500 rpm at 35 °C for 24 hours. A volume of 50 mL of deionized (DI)
water was added to this mixture, which was then centrifuged at 3500
rpm speed for 5 min. The washing step was repeated 6 times until the
final sediment was filtered and dried at room temperature to obtain the
TigCaTx MXene flakes. The powder was then dispersed in water and
sealed under a nitrogen atmosphere.

NCs Preparation and Synthesis. Fig. 1 shows the schematic of the
fabrication process and characterization of NCs. To synthesize GO-Ag-
MOF, first, 0.5 g of BTC was dissolved in 20 mL of ethanol and 0.5 g
of silver nitrate was dissolved in 20 mL of water. The two solutions were
mixed and 50 mg of GO powder was added to the mixture, which was
then sonicated for 1 h using an ultrasonic probe at 0.5 pulses, 40 W
output energy, and 20 kHz frequency (QSonica, Newtown, Connecticut,
USA). The solution was then dried in the oven for 24 h at 40 °C. The
same procedure was adopted for the fabrication of MXene-AgMOF,
except that MXene powder was used in place of GO. For synthesizing
AgMOF, an identical process was carried out, but without the addition of
GO or MXene in the solution.

Characterization Techniques. The X-ray powder diffraction (XRD)
data was obtained by Cu K, radiation (Bruker D8, Billerica, USA) at 298
K at theta-2 mode from 5° to 60°. The Brunauer—-Emmett-Teller (BET)
process was performed to quantify the available surface area and the
pore volume of the materials with an Autosorb iQ instrument
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Fig. 1. Schematic illustration of NPs fabrication and chemical structure, as well as SEM and TEM representative micrographs. (a) 3D structure of TizCoT, MXene. (c)
Chemical structure of MXene-AgMOF. MXene sheets are highly hydrophilic, and their hydroxyl groups facilitate hydrogen bonding to the other oxygen-containing
groups of the AgMOF. (d) Chemical structure of GO-AgMOF. GO has many hydroxyl, epoxide, and carboxyl groups that are prone to share hydrogen with AgMOF. (e)
SEM image of AgMOF. (f) SEM image of GO-AgMOF, showing that GO sheets and AgMOF crystals are strongly bonded. It should be noted that all of the NCs have
been washed (centrifuged) and dispersed (ultrasonicated) in ethanol multiple times before the imaging. (g) SEM image of MXene-AgMOF, showing the composition of
MXene and AgMOF. (h) TEM image of AgMOF. (i) TEM image of GO-AgMOF. (j) Bright-field TEM image of MXene-AgMOF.
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(Quantachrome, USA). NANOTRAC WAVE II (Microtrac, Osaka, Japan)
was used to determine the zeta potential of the nanoparticles (aqueous
0.5 M KCI) [49]. To obtain the MB and OG concentrations, UV-visible
spectroscopy (UV-Vis) was applied at 665 nm and 491 nm wavelength,
respectively (Genesys 10s, Thermo Fisher, USA).

The NCs surface morphology was investigated by scanning electron
microscopy (SEM, Apreo Field Emission SEM, Thermofisher, USA) of
gold-coated samples. Energy-dispersive X-ray spectroscopy (EDS) was
utilized for mapping and elemental tracing of the synthesized NCs.
Transmission electron microscopy experiments (TEM, FEI Tecnai F-20,
Thermo Fisher, Waltham, USA) were performed for structural analysis.
Also, Raman spectroscopy of NCs and loaded samples was carried out
using a JASCO NRS-5500 Raman Spectrometer with a 532 nm laser.

Absorption Procedure. The adsorption capacity of the various ma-
terials was determined at room temperature at various initial dye con-
centrations (0-200 mg/L, pH = 7) by dispersing 0.01 g of adsorbents in
20 mL of aqueous dye solution. All the vials were shaken for 24 h at 150
rpm before measuring the residual dye in the solution and calculating
the adsorbed amount. To investigate the effect of pH, 20 mL of the dye
solutions with a concentration of 200 mg/L were prepared at various pH
values; 0.01 g of adsorbent was then added to the dye-containing flasks)
The pH was adjusted using 0.1 M NaOH and 0.1 M HCI. Triplicate
samples of each condition previously mentioned were prepared and
analyzed; the mean value is reported. The dye concentrations were
determined by UV-Vis spectrophotometry and using an absorbance-
concentration calibration curve. The adsorption removal efficiency,
RE, and the adsorbent capacity, q, were calculated with Eqs (1) and (2):

RE(%) = <C°g C’) x 100 )

0

(©-c),
m

Vv 2

where V (L) is the volume of the dye solution, C¢ (mg/L) is the final
concentration of the dye, Cy (mg/L) is the initial concentration, and m is
the adsorbent mass added into the solution.

The adsorption data were calculated using Freundlich, Langmuir,
and Temkin models using Egs., (3), (4), and (5), respectively, as follows:

_qkaLXCe

=T xC, 3
Ge=kp x C,'" 4@
g.=BxInky +B x1nC, )

The kinetics of adsorption were analyzed using pseudo-first-order,
pseudo-second-order, and intra-particle diffusion models; see, respec-
tively, Egs., 6, 7, and 8:

In(g —gq,) =In gy + kit ©)

111 1
o o )
4 q Kq ot
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In the above equations, q; and gr stand for the adsorption capacity at
time t (h) and the end of the test, respectively, k; (1/min) is the rate
constant of pseudo-first-order adsorption, ko (1/min) is the rate constant
of pseudo-second-order adsorption, kiq (1/min) is the rate constant of
the Temkin model and C is its intercept.

3. Results & discussion

Characteristics of Functionalized AgMOF. Fig. 1 summarizes the
3D and chemical structure of the materials. SEM and TEM images of the

Case Studies in Chemical and Environmental Engineering 7 (2023) 100296

AgMOF and GO-AgMOF imply a typical crystalline and sheet-like
structure that is consistent with our previous study [50]. While the
former materials were thoroughly characterized by previous literature,
this report focuses on the properties of new MXene-AgMOF, which were
corroborated by a combination of techniques, with results summarized
in Fig. S1. Specifically, Fig. Sla reports the characteristic Ko and Kf
peaks of titanium, respectively, at energies of 4.51 keV and 4.93 keV
[51,52], indicating the presence of titanium in the survey area of the
fabricated nanocomposite. Similarly, EDS analysis showed correspond-
ing titanium and silver peaks [53]. The FTIR spectrum in Fig. S1b shows
two sharp peaks at 2907 and 1062 cm ™ that are respectively assigned to
the C-H and C-O stretching vibrations [54]. The peak at 1647 cmLis
associated with the interaction of silver atoms with MXene nanosheets
[55]. Moreover, the Ti-O stretching vibration is observed at around 575
em ! [54]. Fig. S1c presents the Raman spectrum of MXene-AgMOF. The
two dominant peaks at ~1553 and ~1349 cm™! are related to the aro-
matic benzene ring present in the AgMOF ligand. Indicative bonds of
TizCaTy (Tx = Oz, OH) MXene are commonly reported at 210, 630, and
730 cm ! [56,57]. Here, these peaks were detected approximately at
205, 620, and 711 cm™}, ie., slightly shifted, most likely due to the
interaction with the AgMOF ligand. The Raman peaks at 205 and 711
cm ! are respectively associated with the Ti-C and C-C vibrations of our
oxygen-terminated MXene Ti3C202, known as A1g symmetry vibrations
[58]. Finally, the peak at 620 em s usually related to the C atoms
vibrations (known as Eg vibrations) in the OH-terminated MXene [58],
which was not used in our experiment. A likely explanation is that the
interaction of MXene and AgMOF ligand could replace one oxygen atom
with a hydrogen atom, turning some oxygen-terminated MXene into an
OH-terminated MXene structure. Furthermore, Fig. S1d presents XRD
results of MXene-AgMOF in which the peaks observed at roughly 17.05°
and 27.34° can be attributed to the diffractions of (004) and (006)
planes in MXene [59,60].

Charge and Porosity of the NCs. The surface charge of the three
materials fabricated in this study was evaluated by zeta potential mea-
surements, where all the NCs showed a negative zeta potential (Fig. 2a).
The GO-AgMOF and MXene-AgMOF demonstrated a lower pK than
AgMOF. Various oxygen-containing functional groups on both GO and
MXene appeared to increase the active charges at a slightly acidic pH
[61-63]. The internal porosity and the availability of sites for adsorption
of the various NCs were also evaluated with Brunauer, Emmett, and
Teller (BET) tests by adsorption/desorption of nitrogen gas (Fig. 2b and
c¢), with results summarized in Table 1. The numbers suggest that the
BET surface area increased for both GO-AgMOF and MXene-AgMOF
compared to traditional AgMOFs, with the GO-AgMOF nano-
composites associated with the largest surface area and pore volume. In
particular, the surface area of GO-AgMOF was more than three times
higher than that of AgMOF and nearly twice that of MXene-AgMOF.

3.1. Dye adsorption performance

Dye removal efficiency. GO-AgMOF achieved a specific mass
adsorption of around 399.9 mg/g, allowing it to remove 99.9% of MB
from solutions with a rather high starting dye concentration (200 ppm,
Fig. 3) [66]. Also, AgMOF and MXene-AgMOF provided very high
removal efficiency approaching 98% under similar conditions. Photo-
graphs of the experimental vials suggest that all the NCs formed floc-
cules during MB adsorption, which is a crucial step for the secondary
removal process and the separation of spent adsorbent from clean water
in the case that the adsorbent is added as a powder. While NCs showed a
promising adsorption capacity for MB, lower efficiency was observed
with OG, implying that electrostatic interactions govern the adsorption
phenomenon while not being the only forces at play. Although
MXene-AgMOF improved the adsorption capacity of AgMOF towards
OG, the observed efficiencies were consistently lower than 20% for OG,
with qe values of approximately 58 mg/g or lower.

The effect of pH on removal efficiency is summarized in Fig. 4. The
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Fig. 2. (a) Zeta potential of the three NCs. (b) BET test results for nitrogen adsorption/desorption isotherms. GO-AgMOF is the only sample that showed a hysteresis,
which demonstrates a typelll isotherm. Typelll isotherm occurs when the sample possesses a mesoporous structure, which translates into higher pore volume and
surface area for the GO-AgMOF compared to the other two materials [64]. (¢) Pore size distribution curve of the AgMOF, GO-AgMOF, and MXene-AgMOF, suggesting

that all samples possessed a uniform pore size distribution [65].

Table 1
Physical characteristics of AgMOF, GO-AgMOF, and MXene-AgMOF.

Adsorbent BET Surface Area Pore Volume Mean Pore Diameter
(m*/g) (cm®/g) (nm)
AgMOF 1.3 0.001 5.6
GO-AgMOF 4.2 0.005 5.1
MXene- 2.2 0.003 3.9
AgMOF

results suggest that the removal efficiency decreased with increasing pH
for both dyes. At the alkaline range, deprotonation of MB solution can
reduce the electrostatic attraction for adsorption onto the negatively
charged adsorbents [66]. A similar trend was observed for OG, where
the increased density of negative charges of the adsorbents at higher pH
values repelled them for the surface, corroborating the dominant role of
electrostatic interactions to drive adsorption.

Adsorption kinetics. The effect of contact time on the adsorption of
MB and OG is displayed in Fig. 5 and suggests that for MB, >98% of
adsorption efficiency (equal to a specific mass adsorbed >390 mg/g)
was achieved after 14 h of exposure to the NCs. In the case of OG, after
14 h of the experiment, adsorption nearly stopped with specific mass
adsorbed lower than 60 mg/g (15% adsorption efficiency). In order to
further investigate the adsorption kinetics of AgMOF, GO-AgMOF, and
MXene-AgMOF, experimental data in Fig. 5 were analyzed using the
intra-particle diffusion, pseudo-first-order, and pseudo-second-order
equations and the fitted parameters are displayed in Table 2. The
pseudo-first-order model showed the best fit and the highest coefficient
of determination (R-squared), while the pseudo-second-order did not
adequately describe the adsorption data. The predicted specific

Table 2
The adsorption kinetics analysis of MB and OG.

adsorbed mass with the pseudo-first-order model was between 430 and
480 mg/g, which is close to the experimental data, thereby confirming
the suitability of this model to describe the adsorption phenomenon
[67]. This result also suggests that the adsorption of MB and OG by the
AgMOF, GO-AgMOF, and MXene-AgMOF follows physisorption.

The fitted experimental data with the intra-particle diffusion model
describes two different stages for the adsorption of MB: First, adsorption
starts with an initial sharp increase, which can be due to the quick
interaction of MB with the surface of the adsorbents, and then,
adsorption reaches equilibrium because most of the MBs were already
captured. However, for OG, most of the experimental data follow a
linear trend, which is consistent with the higher R-squared data gener-
ated. Such linearity of the data can be ascribed to the adsorption
mechanism related to intraparticle diffusion [68].

Adsorption Isotherms. Experimental adsorption data from Fig. 2
were analyzed using Freundlich, Langmuir, and Temkin isotherms (see
Fig. 6), and the estimated parameters are presented in Table 3. These
data suggest that the prediction from the Temkin model is not satisfac-
tory, but the Langmuir and Freundlich models fit best with the experi-
mental isotherm data, as they offered higher R-squared values, close to
1. The Freundlich model supports multilayer adsorption, while the
Langmuir model supports monolayer adsorption [7]. However, the
predicted maximum adsorption capacity by the Langmuir model is far
off the experimental data; therefore Freundlich model is the most suit-
able one to explain the adsorption process in the present work.

Adsorption Mechanism. It may be noted that all three AgMOF-
based NCs adsorbed more than 98% of MB in 24 h at pH 7, whereas
the largest adsorption was demonstrated for OG at pH 3, which did not
exceed 20% removal. Both GO-AgMOF and MXene-AgMOF NCs adsor-
bed larger fractions (99.9% and 99%, respectively) of MB, even at the

Adsorbent/Dye Pseudo-First-Order Pseudo-Second-Order Intra-Particle
9e kg R? Qe ka R? C kig R?

MB

AgMOF 479.5 0.08 0.96 30.1 0.02 0.85 -50.0 96.7 0.92
GO-AgMOF 428.0 0.14 0.97 30.5 0.02 0.65 -3.2 91.3 0.92
MXene-AgMOF 452.7 0.10 0.96 30.2 0.02 0.79 —36.6 95.3 0.92
oG

AgMOF 51.5 0.14 0.99 18.9 0.007 0.67 0.3 10.8 0.95
GO-AgMOF 71.3 0.06 0.97 16.6 0.005 0.91 -7.2 7.2 0.94
MXene-AgMOF 71.3 0.06 0.98 19.1 0.007 0.90 —-4.7 13.8 0.93

Je (mg/g): adsorption capacity.

K1(1/min): rate constant of Pseudo First Order model.
R2: R-squared value.

K2 (1/min): rate constant of Pseudo Second Order model.
C(mg/g): intercept.

Kid (1/min): Tate constant of Temkin model.
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Fig. 3. The removal efficiency of AgMOF, GO-
AgMOF, and MXene-AgMOF. The pH was set to 7
for all solutions at room temperature. (a) The
removal efficiency of MB as a function of initial
dye concentration in solution. (b) Photographs of
the MB adsorption vials after 24 hours of the
experiment. (c¢) The removal efficiency of OG as a
function of initial dye concentration in solution.
(d) Photographs of the OG adsorption vials after 24
hours of the experiment. All data in (a) and (c) are
the average of three different experiments with a
coefficient of variation lower than 10%.

AgMOF MXene-AgMOF
i ! ! 80 1 L 1 1 L
a 400 ‘—‘s r b (@) i
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3904 - 23 3
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Fig. 4. Effect of pH on the removal efficiency of (a) MB and (b) OG. Photographs of the adsorption vials (at pH = 3) are shown within the graphs. The data points are
the average of three different experiments with a coefficient of variation lower than 10%. Experiments were carried out at room temperature and the initial dye

concentration was 200 mg/L.

high initial concentration of 200 mg/L. None of the NCs showed an
acceptable adsorption efficiency towards OG. The adsorption kinetics
analysis suggests that pseudo first order is the best predicting model for

the adsorption of MB and OG by NCs since the model is based on
physisorption rather than chemisorption [69]. In the case of physical
adsorption, the zeta potential, surface area, and pore volume [7] are the
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Fig. 5. The adsorption kinetics analysis of MB and OG. The initial concentration of dye solutions was 200 mg/L and experiments were carried out at pH 7 and room
temperature. (a;) The adsorption capacity of AGMOF, GO-AgMOF, and MXene-AgMOF versus time toward MB, (az) Pseudo-first-order model for adsorption of MB,
(a3) Pseudo-second-order model for adsorption of MB, (a4) Intraparticle diffusion model for adsorption of MB, (b,) The adsorption capacity of AgMOF, GO-AgMOF,
and MXene-AgMOF versus time toward OG, (by) Pseudo-first-order model for adsorption of OG, (b3) Pseudo-second-order model for adsorption of OG, (bs)
Intraparticle diffusion model for adsorption of OG. The pseudo-first-order model has the highest R-squared value for both dyes, describing the adsorption as physical
adsorption. Here q stands for adsorption capacity at time t.
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Fig. 6. The adsorption isotherm analysis of MB and OG. All experiments were carried out at room temperature and pH = 7. (a;) Experimental data and Langmuir
model prediction of AgMOF, GO-AgMOF, and MXene-AgMOF for MB, (a2) Experimental data and Freundlich model prediction of AgMOF, GO-AgMOF, and MXene-
AgMOF for MB, (as) Experimental data and Temkin model prediction of AgMOF, GO-AgMOF, and MXene-AgMOF for MB, (b;) Experimental data and Langmuir
model prediction of AgMOF, GO-AgMOF, and MXene-AgMOF for OG, (bz) Experimental data and Freundlich model prediction of AgMOF, GO-AgMOF, and MXene-
AgMOF for OG, (b3) Experimental data and Temkin model prediction of AgMOF, GO-AgMOF, and MXene-AgMOF for OG. Freundlich’s model best describes the
adsorption behavior in which dye is captured in multilayers (as a result of physical adsorption).

main properties driving the mechanism of removal of dyes and con- MXene-AgMOF had higher surface area than AgMOF. MXene and GO are
taminants from the solution because the first is related to the electro- highly porous materials, and their incorporation into the AgMOF would
static driving force, while surface area and pore volume are associated increase the overall surface area and pore volume of the NCs [50,61].

with the availability of adsorption sites [54]. GO-AgMOF and GO-AgMOF has the highest negative surface charge, thus explaining its



M. Dadashi Firougzjaei et al.

Table 3
Adsorption isotherm analysis of MB and OG.
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Adsorbent/Dye Langmuir Model Freundlich Model Temkin Model
Qqm(x10%) ky, R? kg n R? kr B R?

MB

AgMOF 134.3 1.47 0.99 1.8 0.9 0.99 0.25 65.0 0.69
GO-AgMOF 87.9 2.28 0.99 2.0 1.0 1.0 0.11 94.0 0.79
MXene-AgMOF 72.7 2.75 0.99 1.9 0.9 0.99 0.25 65.3 0.69
oG

AgMOF 0.14 0.002 0.99 0.67 1.25 0.98 0.30 8.11 0.77
GO-AgMOF 45.0 3.364 0.97 0.08 0.89 0.99 0.25 5.0 0.64
MXene-AgMOF 0.08 0.010 0.98 2.68 1.71 0.97 0.37 11.3 0.88

Qqm (mg/g): maximum adsorption capacity.
ki, (I/mg): Langmuir equilibrium constant.
R% R-squared value.

kg: Freundlich adsorption capacity constant.
n: adsorption intensity.

kr (I/mg): Temkin equilibrium constant.

B: Temkin constant.

higher adsorption rates. In conclusion, the synergetic effect of more
negative surface charge, larger surface area, and higher pore volume
helped GO-AgMOF to excel in MB adsorption efficacy compared to
AgMOF.

Adsorption Characteristics. To fully characterize the adsorption of
the MB and OG on the NCs, XRD (Fig. 7a;-a3) and Raman spectroscopy
(Fig. 7by-bg) analyses were performed. Fig. 7ag presents the XRD spectra
of MXene-AgMOF, MXene-AgMOF-MB (the MXene-AgMOF NCs after
adsorption of MB), and MXene-AgMOF-OG (the MXene-AgMOF NCs
after adsorption of OG). The peaks at around 17.05° and 27.34° can be
attributed to the diffractions of (004) and (006) planes in MXene [70,
71]. These peaks are substantially shifted for MXene-AgMOF-MB to
lower angles at 16.8° and 27.13°. These shifts are more subtle for
MXene-AgMOF-OG. Furthermore, the appearance of two new
low-intensity peaks at 43.85° and 46.53° in the MXene-AgMOF-MB
spectrum and their absence in MXene-AgMOF and MXene-AgMOF-OG
spectra may be rationalized as higher adsorption rates of MB in
MXene-AgMOF-MB [72,73]. XRD spectra of GO-AgMOF, GO-Ag-
MOF-MB, and GO-AgMOF-OG are shown in Fig. 7as. Considering the
GO-AgMOF spectrum, the characteristic peaks of GO are observed at 20
=10.15° and 24.72° [74,75]. The latter disappeared in loaded samples,
and the former shifted with a different intensity [7,76]. Lastly, XRD
spectra of AgMOF, AgMOF-MB, and AgMOF-OG are presented in
Fig. 7a;. The indicative peak of Ag (111) was observed at around 20 =
36.49° [77,78]. The peaks at 6.15°, 10.85°, and 13.10° may respectively

20 (degree)

Raman Shift m+)

a 1 —— AgMOF b1 —— AgMOF
——AgMOF-MB ——AgMOF-MB
& AgMOF-0G | 2 AgMOF-0G
= =
c c /\
[ [ A
] +— \
c WY c /
= T A i J
0 25 % % 40 a 20 S0 70 | 100 | 1250 | 100 1750
a 20 (degree) b Raman Shift m1)
2 GO-AgMOF 2| —congmor N
> ——Go-AMORMB| T | o eor e
s | ~—GO-AgMOF-0G = — GO-AgMOF-0G
(2] | w
c ' ‘ | | =
[7] ‘ | l . [}
£ _,AH‘JJ b i, £
S Lkl A ] = : A
s 15 0 2 % 3 o 4 250 S0 750 | 1000 1550 | 100 1750
260 (degree) Raman Shift (cm)
33 AgMOF b3 Ag
(OF-MB A
E‘ IOF-0G _é‘ AEMOF-0G
(2] (%)
c =
[ []
€ = i i
= E |l Wdani oAl
o @ s 20 s0 | 750 100 1250 1500 1750 %

be ascribed to (110), (200), and (211) diffraction indices of AgMOF [78,
79]. Overall, the spectra for loaded samples followed the same pattern as
pristine samples but with considerable peak shifts. The corresponding
peaks of (110), (200), and (211) indices were respectively shifted to
6.29°, 10.97°, and 13.25° for the loaded samples. Besides, Ag (111)
shifted to 36.59°.

The Raman spectra of GO-AgMOF and loaded GO-AgMOF-MB and
GO-AgMOF-0OG are presented in Fig. 7b,. A typical Raman spectrum of
GO is characterized by two high-intensity peaks, referred to as the G
band at ~1597 cm ™7, corresponding to CC bonding, and the D band at
~1353cm ™! [80-82]. Here, the corresponding G band and D band of the
GO-AgMOF sample were respectively observed at ~1569 cm™! and
~1528 cm ™Y, slightly red-shifted due to disorders and/or defects caused
by bonding with AgMOF ligand and Ag ions [83,84]. This shift was
slightly more pronounced for the Raman spectrum of GO-AgMOF-MB,
for which the assigned peak of the G band was detected at ~1559
cm L. This further shift, in addition to the intensity change, suggests that
the adsorption process was related to the bondage between active
groups of GO-AgMOF and MB. However, the shift was smaller in the
Raman spectrum of GO-AgMOF-OG (blue-shifted compared to
GO-AgMOF spectrum), showing the assigned G band at ~1584 cm™!
with a much lower intensity, supporting some adsorption of OG but not
as much as MB.

Fig. 7bs shows the Raman spectra of MXene-AgMOF, MXene-
AgMOF-MB, and MXene-AgMOF-OG samples. Again, the two dominant
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Fig. 7. (a;-a3) XRD analysis of NCs before and after the adsorption, (b;-bs) Raman spectroscopy of the NCs before and after the adsorption, and (c¢) EDS spectrum of
the NCs before and after the adsorption.
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peaks at ~1553 and ~1349 cm ™! are attributed to the aromatic benzene
ring in the AgMOF ligand. Indicative bands of Ti3CT, MXene are re-
ported to be at 210, 630, and 730 em™! [85,86]. These peaks were
actually detected approximately at 205, 620, and 711 cm 2, slightly
shifted, most probably due to the interaction with the AgMOF ligand.
The Raman peaks at 205 and 711 cm ™! are respectively associated with
the Ti-C and C-C vibrations of our oxygen-terminated MXene TizCyTy,
known as Ajg symmetry vibrations [87]. The peak at 620 cm ! is mainly
caused by C atoms vibrations (known as Eg; vibrations) in the
OH-terminated MXene [58] which has not been used in the experiment.
This peak is still detected because the interaction of MXene with AgMOF
ligands could replace one oxygen atom with a hydrogen atom, turning
some oxygen-terminated MXene into an OH-terminated MXene struc-
ture. In the Raman spectrum of the MXene-AgMOF-MB sample, the
characteristic peaks of MB at 447, 769, 1147, 1387, and 1620 cm ! [88]
were observed with slight shifts because of the bond-forming with the
adsorbents. The peak at 447 cm™! is assigned to the C-N-C deformation
mode [89]. Peaks at 769 and 1147 cem~ ! are due to C-H in-plane
bending modes [89]. C-N symmetrical stretching mode is observed at
1387 cm™! [90,91]. The dominant peak at 1620 is corresponded to the
C-C ring stretching [89,92]. Noticeably, this peak is asymmetric with a
shoulder at lower energy, caused mainly by the aromatic ring in the
AgMOF ligand. It should be mentioned that the peak associated with the
Ti—C vibrations is still observed in the spectrum with a slight shift at
~196 cm™!. However, the peak associated with the C-C vibration of
TigCyTy is absent or dominated by the peak at 769 em L. Overall, the
presence of MB indicative peaks and the adsorbents in the spectrum
advocate that effective interaction occurs between them. The corre-
sponding aromatic ring peak in the Raman spectrum of the
MXene-AgMOF-OG sample is centered at 1589 and ~1369 cm ™. The
peaks at ~547 and ~1233 cm ™! are believed to be due to 0-S-O and
SOg vibrations [93,94] present in the OG structure. The peaks associated
with the Ti—C and C-C vibrations of Ti3CyT, were also detected at ~199
and ~711 cm™!. However, the intensity of these peaks was very low,
suggesting the marginal adsorption of OG. For AgMOF (Fig. 7b;), the
strongest peak is localized at 1585 cm™! and is recurrent in all three
spectra. Moreover, the peak at ~996 cm ™ is most probably attributable
to vibrations of silver atom bonding [95,96]. The second sharp peak is
observed at 1343 cm™! for the AgMOF spectrum, slightly shifted for
AgMOF-MB (1333 cmfl) and AgMOF-0OG (1328 cm’l) spectra. These
shifts are due to the subtle change in the structure of AgMOF after
interaction with dyes, suggesting the adsorption has been successfully
implemented, especially for MB.

The energy dispersive spectroscopy (EDS) spectra of the NCs, before
and after the adsorption, are displayed in Fig. 7c. Also, the mapping
images of all critical elements are reported in Figs. S2-S10. In summary,
the characteristic peaks of titanium for MXene-AgMOF and silver for all
materials were detected in the EDS spectra, while sulfur as an element
that exists in both MB and OG was mapped for all the materials after
adsorption (Figs. S2-510) confirming the capture of both dyes.

4. Conclusion

In this work, GO and MXene sheets were combined with AgMOF to
obtain NCs of GO-AgMOF and MXene-AgMOF and to investigate their
adsorption properties toward MB and OG. All NCs were fully charac-
terized using SEM, TEM, XRD, and Raman spectroscopy. All three NCs
adsorbed more than 98% of MB in 24 h, whereas the largest adsorption
was demonstrated for OG (at pH 3), but which did not exceed 20%
removal efficiency. GO-AgMOF and MXene-AgMOF NCs adsorbed more
MB dye (99.9% and 99%, respectively, even at a high initial dye con-
centration of 200 mg/L) compared to AGMOF. However, none of the NCs
showed acceptable adsorption efficiency towards OG. The batch
adsorption tests confirmed the pseudo-first-order kinetic, supporting
physisorption and electrostatic interaction as the main driving force.
The results suggest that all three NCs can be promising adsorbents for
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MB, especially GO-AgMOF. Also, the composition of MXene with
AgMOF followed a facile approach to enable the enhanced functionality
of AgMOF, suggesting that MXene-AgMOF is a promising candidate for
environmental remediation applications.
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